13 research outputs found

    Robustness Evaluation of Computer-aided Clinical Trials for Medical Devices

    Get PDF
    Medical cyber-physical systems, such as the implantable cardioverter defibrillator (ICD), require evaluation of safety and efficacy in the context of a patient population in a clinical trial. Advances in computer modeling and simulation allow for generation of a simulated cohort or virtual cohort which mimics a patient population and can be used as a source of prior information. A major obstacle to acceptance of simulation results as a source of prior information is the lack of a framework for explicitly modeling sources of uncertainty in simulation results and quantifying the effect on trial outcomes. In this work, we formulate the Computer-Aided Clinical Trial (CACT) within a Bayesian statistical framework allowing explicit modeling of assumptions and utilization of simulation results at all stages of a clinical trial. To quantify the robustness of the CACT outcome with respect to a simulation assumption, we define δ-robustness as the minimum perturbation of the base prior distribution resulting in a change of the CACT outcome and provide a method to estimate the δ-robustness. We demonstrate the utility of the framework and how the results of δ-robustness evaluation can be utilized at various stages of a clinical trial through an application to the Rhythm ID Goes Head-to-head Trial (RIGHT), which was a comparative evaluation of the safety and efficacy of specific software algorithms across different implantable cardiac devices. Finally, we introduce a hardware interface that allows for direct interaction with the physical device in order to validate and confirm the results of a CACT for implantable cardiac devices

    PLEASE SCROLL DOWN FOR ARTICLE

    No full text
    This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Journal of Biopharmaceutical Statistics, 19: 563–565, 2009 Copyright © Taylor & Francis Group, LL
    corecore